How to Measure Drell-Yan TSSA Raw Asymmetry at 10^-3 Level with a polarized proton target?

- The challenges of precision TSSA measurements
 - Detector acceptance * efficiency varies >>1% level over a few hours of operation under a given "target polarization" configuration
 - Very difficult to measure the relative beam on target(NH3) luminosity at ~10^-3 level
 - Large beam x-y profile
 - small target size
 - Beam position/direction jitter (dX ~ 1-2mm),
 - see https://p25ext.lanl.gov/elog/Hardware/12
 - non-uniform DC responses to large beam intensity fluctuations (~O(10%))
 - NH3 packing factor variation >~1% from target to target
 - Target polarization known to ~O(3-4%) level through NMR
 - Other variations, including target changes etc, ~O(1%)
 - Frequent spin flip is hard/impossible
 - can't do what we are doing at RHIC and Jlab
 - Takes time to reach a stable polarization
 - We must be able to measure raw TSSA at 10^-3 level for a given target polarization configuration
- A new approach needed

1

The Normal Approach in "collider-mode": RHIC, JLab etc.

Spin UP(1) and DOWN(2):

$$A = \langle pol \rangle * physics asymmetry, \sim O(1\%)$$

$$dN_1(\phi) = N_1 \times (1 + A \times cos(\phi))$$

$$dN_2(\phi) = N_2 \times (1 - A \times \cos(\phi))$$

$$R = N_1/N_2$$

Relative luminosity,

for E1039, this is the luminosity of beam on target, which is very hard to measure to <<(0.1%)!

$$A_{raw}(\phi) = (dN_1 - R \times dN_2)/(dN_1 + R \times dN_2) = A \times cos(\phi)$$

Need precision measurements of relative luminosity, better than $^{\circ}O(0.1\%)$

$$\delta A_{raw} \sim (\delta R + X...)$$

Reality: Not So Perfect Detector and Beam Controls

- Not so perfect detectors (dt ~ minutes) without fast spin flip (dT << minutes)
 - Polarized target spin-flip period ~ several hours
- Acceptance varies within the time of a fixed "target spin config."
 - Time dependence
 - Dead and hot space points
 - Impossible to get to << O(0.1%)

$$dN_{Targte}(\phi) = N_{Target}^{0}(1 + P \times A \times cos(\phi)) \times \epsilon_{target}(\phi, t)$$

If target is not a pure proton, for e.g. NH₃, another background fraction "f_B", including all other supporting materials,

$$dN_{Target} = [N_1 + N_2 \times (1 + p \times A \times cos(\phi))] \times \epsilon(\phi, t)$$

Background fraction: Varies target to target

$$f_B = \frac{N_1}{N_1 + N_2}$$

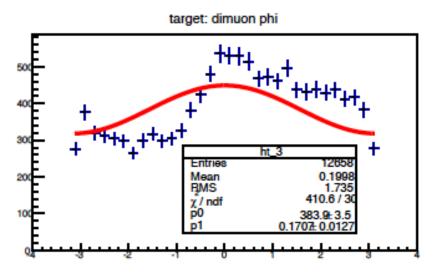
Target and time-dependent

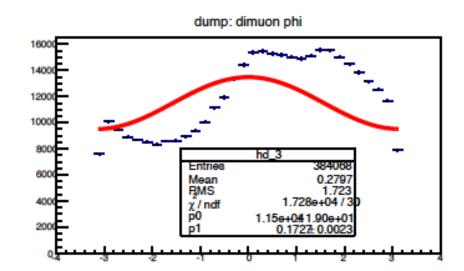
$$dN_{Target}(\phi) = N_{Target}^{0}(f_B + (1 - f_B)(1 + P \times A \times cos(\phi))) \times \epsilon(\phi, t)$$

DY events produced in "Target"

Target variation

(space,time) variation

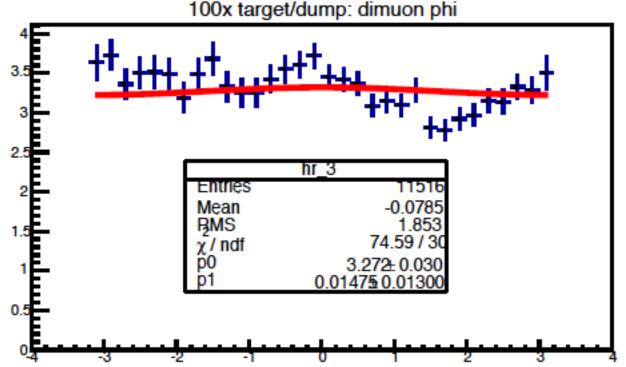

False Detector Asymmetry Study


- Run-2 data dimuons (Roadset 57)
- Event selection:
 - 4< mass < 7
 - Target events: -250 < z0 < -50cm
 - Beam dump events: -50 < z0 < 200 cm
 - Track quality cuts
- Detector (relative) acceptance for DY events
 - Raw "spin" asymmetries
 - MC study need to correct target/beam dump acceptance difference
 - Trigger road bias
 - Detector acceptance corrections
 - Further reduce raw asymmetry via target spin-flip and Fmag/kMag field directions
 - Keep the same "target dipole field", only change RF frequency to flip the direction of target polarization
 - Change the FMag and kMag field directions
 - · Impact of Relative beam on target beam luminosity

Run-2: Close Look of DY Phi Distributions

We need to get the false asymmetry << 0.1% ~ expected raw spin asymmetry

$$y(\phi) = N \times (1 + A \times \cos(\phi))$$



A = 0.171 + -0.013 - 100x too large!

Huge false asymmetry: >> X10 sigma

A New Approach

- Using the same DY events from beam dump to normalize the detector acceptance effects
 - Beam dump events, 100x statistics, similar muon acceptance
 - the stat_err from reference << signal stat_err
 - the beam dump asymmetry = 0
 - Known physics
 - normalize the beam intensity
 - Can achieve O(1%) on relative luminosity of beam on target, with dedicated telescopes
 - Identical timing and spatial variation of detector acceptance and efficiency for signal and background
 - Can achieve O(0.1%) on raw asymmetry

False asymmetry after normalization:

~ 1 sigma, good!

Need to run ~100x more MC or data to prove we can reach 0.001 level!

$$A = 0.015 \pm 0.013$$

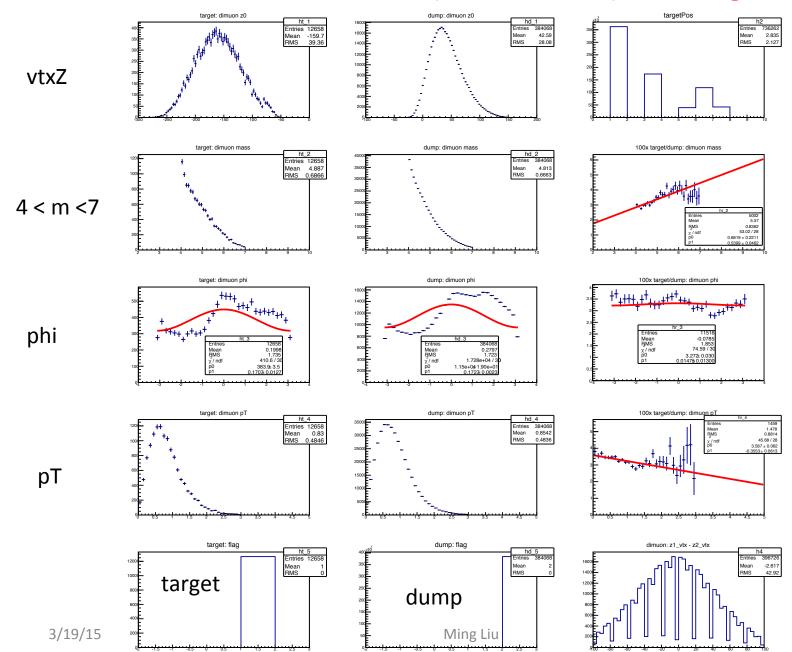
How it works?

$$\begin{split} dN_{T \arg et}(\phi) &= N_1 + N_2 (1 + P \cdot A \cdot \cos(\phi)) \\ &= N_{T \arg et}^0 (f_B + (1 - f_B)(1 + P \cdot A \cdot \cos(\phi))) \times \varepsilon(\phi, t) \end{split}$$

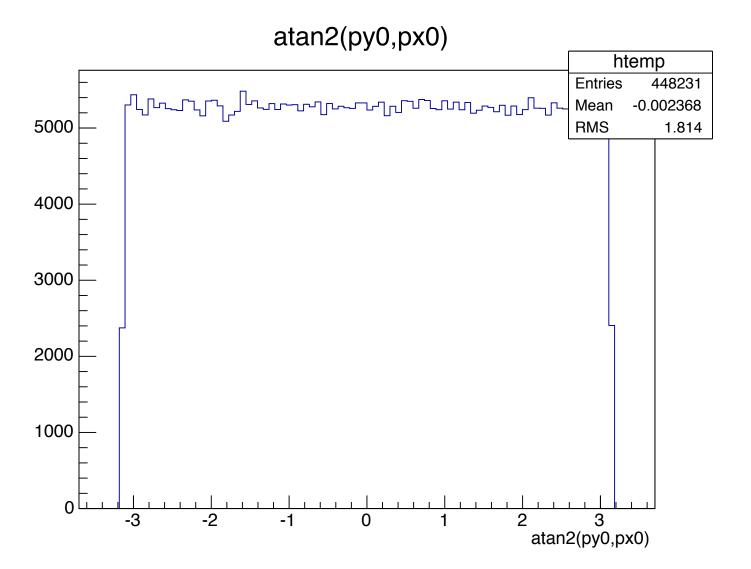
$$dN_{\scriptscriptstyle Dump}(\phi) = N_{\scriptscriptstyle Dump}^{\scriptscriptstyle 0} \times \varepsilon(\phi,t)$$

$$f_B = \frac{N_1}{N_1 + N_2}$$

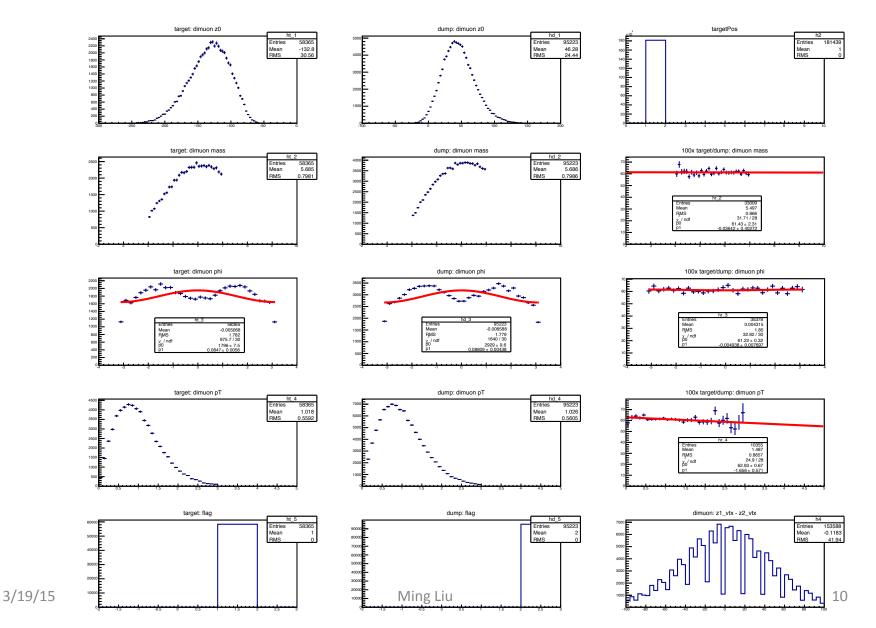
If we use the same DY dimuon events (mass, pT,xF etc) from Target and Dump:


- the time-dependent detector acceptance variations are mostly canceled out
- The small difference can be corrected with MC and data by using the muons measured in the same phase space
- Much reduced requirements on relative lumi, background fraction, target polarization measurements
 - sufficient at O(1%) level.

$$\Delta R(\phi) = dN_{Target}(\phi)/dN_{Dump}(\phi)$$


$$\Delta R(\phi) = \frac{N_{Target}^{0}}{N_{Dump}^{0}} (f_B + (1 - f_B)(1 + P \times A \times cos(\phi))) \times (\epsilon_{target}(\phi, t) / \epsilon_{dump}(\phi, t))$$

$$\Delta R(\phi) = \frac{N_{Target}^0}{N_{Dump}^0} (f_B + (1 - f_B)(1 + P \times A \times cos(\phi)))$$


Run-2 DY Dimuon (Roadset 57): all targets

J/Psi MC at Production: Phi

Drell-Yan MC: H and Dump symmetric distributions

Future Work for improvements

- Detailed MC simulation with the new polarized target position
 - Prove the systematic error can be controlled to O(0.1%)
 - Target/Dump DY acceptance correction study
 - 100x more MC events to reach O(0.1%) level precision
- Run2 and Run3 data analysis to understand and correct the large asymmetry
 - Beam axis, directions
 - Detector response to instant beam fluctuations
 - Systematic reduction of the false asymmetry
- New beam position/direction monitoring instruments?
 - Summer shutdown work 2015?
- Beam on target luminosity telescope
 - Summer shutdown work 2015?

Ming's T&E on Pol. DY LDRD

- T&E @20% level (for budget purpose)
 - Joint effort of (Kun + Ming)

Focused efforts

- Integration and transition from E906 to E1039
- Simulations and optimization
- Polarized target related work

Progress

- 2015 summer shutdown work plan
 - New relative luminosity telescopes etc.
 - · Possible electrical and mechanical work in target area
- Identify and develop experimental approach to do high precision spin asymmetry measurements
 - Simulations with optimal target positions
 - Using E906 data and MC to test and confirm new approaches

Future work

- Target test and installation
 - Pump and cryo
 - NMR
 - Calibration
- Design and build the target actuator
- Development of the target control and monitoring software
- Trigger/DAQ optimization

Xiaodong's talk at LDRD meeting 3/12/2015 The Weasured Asymmetry:

$$A_{
m meas} = f \cdot P_{
m T} \cdot A_{
m phy}$$
 P_T=0.8 target polarization for pure NH $_3$ dilution factor: $f = {
m polarized~protons} \over {
m ^{14}NH}_3} = {
m \frac{3}{17}} = 0.176$

In reality, need count all unpolarized material in beam's path, f=0.12~0.14. In JLab Hall B, deep-inelastic scattering data, **f=0.14** (eg1-dvcs).

dilution factor
$$f = \frac{\text{polarized protons}}{\text{Al.+Kapton+}^4\text{He+}^{14}\text{NH}_3 + \text{NMR Coil} + \dots}$$

Need to control systematic uncertainty on measured asymmetry to $\delta(A)_{meas} \approx 0.1\%$

Extremely Challenging !!!

Over two years of data collection, need to carefully monitor the changes of:

- Beam pulse intensity, duty factor, charge profile, halo...
- Target contents, Helium level, polarization...
- Trigger Eff. detector responses, DAQ dead time...
- Background. Track reconstruction Eff. ...

$$A_{meas} = rac{rac{N^{\uparrow}}{\mathcal{L}^{\uparrow}} - rac{N^{\downarrow}}{\mathcal{L}^{\downarrow}}}{rac{N^{\uparrow}}{\mathcal{L}^{\uparrow}} + rac{N^{\downarrow}}{\mathcal{L}^{\downarrow}}} = rac{N^{\uparrow} - N^{\downarrow} \cdot rac{\mathcal{L}^{\uparrow}}{\mathcal{L}^{\downarrow}}}{N^{\uparrow} + N^{\downarrow} \cdot rac{\mathcal{L}^{\uparrow}}{\mathcal{L}^{\downarrow}}}$$

Control raw false asymmetry:

$$\delta(\mathbf{A})_{\mathbf{raw}} \approx \mathbf{0.1}\%$$

3/19/15 Ming Liu 1.

Note from Andi and Pat

- Dilution factor
- Packing fraction
- Empty target (what is it)
- Study of background with distributed vs single target in E906
- Study e906 empty vs hole target (david task)

•

- background contributions
- relative luminosity
- beam monitoring (90 degree monitor) luminosity measurement (measure intensity * target mass)
- synchronize beam spill with NMR measurements (random or regular)
 - help us determine depol during spill
- beam asymmetry on target determined by spectrometer:
 - However: assumes symmetric response. Need to measure this.
 - E906 data analyzed. (david kleinjan)
- beam profile during spill
- time sync between DAQ and pol target (fast control vs Slow control)
- What do we need to record on spill by spill from target system.
- Design Labview for target system.
- Design interface between labview and DAQ; responsible for recording history
- influence of changing beam profile; as an example go from symmetric profile to asymmetric. What would be the limits we could see. Also matters for non homogeneous polarization.
- Rate dependence in spectrometer efficiency as a function of geometry. Does not cancel in 2nd order
- polarization and intensity connected. Over time pol decreases so need to find a way to have same intensity * p product.
- beam angle:

•